

LOS ANGELES COUNTY
SOLID WASTE MANAGEMENT COMMITTEE/
INTEGRATED WASTE MANAGEMENT TASK FORCE
900 SOUTH FREMONT AVENUE, ALHAMBRA, CALIFORNIA 91803-1331
P.O. BOX 1460, ALHAMBRA, CALIFORNIA 91802-1460
www.lacountyiswmtf.org

December 15, 2015

Mr. Jon Sanabria
Deputy Director of Planning
County of Los Angeles Department of Regional Planning
1390 Hall of Records
320 West Temple Street
Los Angeles, CA 90012

Dear Mr. Sanabria:

DEPARTMENT OF REGIONAL PLANNING'S EFFORTS TO MITIGATE ODORS AT THE SUNSHINE CANYON LANDFILL LOS ANGELES COUNTY CONDITIONAL USE PERMIT [CUP] # 00-194-(5)

As you may recall, on February 2, 2015, the Los Angeles County Solid Waste Management Committee/Integrated Waste Management Task Force (Task Force) transmitted the enclosed letter requesting the Department of Regional Planning (DRP) to provide its basis for determining that the Sunshine Canyon Landfill is in overall compliance with its CUP and Mitigation Monitoring and Reporting Summary (MMRS), as stated in DRP's letter dated January 12, 2015. In addition, the Task Force requested a copy of the health studies, findings from the air quality monitoring, and any other documents/factors used to arrive at the conclusion that "Air quality monitoring has not shown any evidence of an imminent substantial risk to the health, safety, or welfare of the local community" (emphasis added).

The odor problem not only persists but has been exacerbated over the past 18 months. During the first ten months of 2015 alone (January through October), a total of **1,645 odor complaints** were reported to the South Coast Air Quality Management District (SCAQMD) and **33 Notices of Violation** were issued to the Landfill operator for violation of SCAQMD's Rule No. 402 and California Health and Safety Code Section 41700 "for discharging such quantities of air contaminants to cause injury, detriment, nuisance, or annoyance to a considerable number of persons" (emphasis added). For this reason, the Task Force needs to understand DRP's basis for determining that the Landfill is in overall compliance with the CUP and for concluding that there is no "imminent substantial risk to the health, safety, or welfare of the local community."

Mr. Jon Sanabria December 15, 2015 Page 2 of 2

The Task Force respectfully requests a prompt response from DRP on or before January 19, 2016.

If you have any questions, please contact Mr. Mike Mohajer of the Task Force at MikeMohajer@yahoo.com or (909) 592-1147.

Sincerely,

Margaret Clark, Vice-Chair

Margaret Clark

Los Angeles County Solid Waste Management Committee/

Integrated Waste Management Task Force and

Mayor, City of Rosemead

KM:fm

P:\EPPUB\ENVAFFAIRS\TF\TF\LETTERS\2015\TFltr2DRP-OdorNhealth12-15-15

Enc.

cc: Supervisor Michael D. Antonovich

Supervisor Sheila Kuehl

Each Member of the County of Los Angeles Regional Planning Commission

Department of Regional Planning (Richard Bruckner, Maria Masis)

Sunshine Canyon Landfill – Community Advisory Committee (Wayde Hunter)

Each Member/Alternate of the Los Angeles County Integrated Waste Management Task Force

Each Member of the Task Force Facility and Plan Review Subcommittee

LOS ANGELES COUNTY
SOLID WASTE MANAGEMENT COMMITTEE/
INTEGRATED WASTE MANAGEMENT TASK FORCE
900 SOUTH FREMONT AVENUE, ALHAMBRA, CALIFORNIA 91803-1331
P.O. BOX 1460, ALHAMBRA, CALIFORNIA 91802-1460
www.lacountyiswmtf.org

February 2, 2015

Mr. Jon Sanabria
Deputy Director of Planning
County of Los Angeles Department of Regional Planning
1390 Hall of Records
320 West Temple Street
Los Angeles, CA 90012

Dear Mr. Sanabria:

REQUEST FOR INFORMATION/UPDATE – EFFORTS BY THE INTERAGENCY WORKING GROUP TO MITIGATE ODORS AT THE SUNSHINE CANYON LANDFILL LOS ANGELES COUNTY CONDITIONAL USE PERMIT [CUP] # 00-194-(5)

On behalf of the Los Angeles County Solid Waste Management Committee/Integrated Waste Management Task Force (Task Force) I would like to thank you for your letter of January 12, 2015. Your letter provided information requested by the Task Force on the County Department of Regional Planning's (DRP) efforts regarding nuisance mitigation pursuant to the requirements of the County's CUP No. 00-194-(5) for the subject Landfill, as well as the Landfill's environmental impact report documents—odor monitoring and mitigating measures.

The Task Force has reviewed your letter in concert with (a) the Los Angeles County Department of Public Works' (DPW) enclosed letter of October 22, 2014, to Mr. Rob Sherman, General Manager, Sunshine Canyon Landfill, (b) CUP Conditions # 7, 11, 12, 45 N, 49 and 81; and (c) the County Health and Safety Code, Title 11, Section 11.02.300, "Nuisance." Among other things, the County Health and Safety Code defines "nuisance" as "....anything that renders air, food and drink detrimental to the health of human beings." Since odors emitted by the Landfill impact humans' ease of breathing, they may be deemed a nuisance as defined by the County Health and Safety Code.

In your letter, you indicated that "Aside from the odor issues, the landfill is at this time in overall compliance with the CUP conditions and MMRS mitigation measures. Air quality

monitoring has not shown any evidence of an imminent substantial risk to the health, safety, or welfare of the local community" (emphasis added). With 580 odor complaints reported to the South Coast Air Quality Management District in connection with the Landfill during the last quarter of 2014 (277 in December alone, including seven Notices of Violation) and the County DPW's communication of October 22, 2014, the Task Force would like to understand the basis that DRP used to determine the Landfill's overall compliance with its CUP conditions and MMRS mitigation measures. In addition, the Task Force requests to be provided with a copy of the studies, including health, findings from the air quality monitoring, and/or any other documents/factors used to arrive at the said conclusion.

The Task Force respectfully requests for your response at your earliest but not later than February 12, 2015.

If you have any questions, please contact Mr. Mike Mohajer of the Task Force at MikeMohajer@yahoo.com or (909) 592-1147.

Sincerely,

Margaret Clark, Vice-Chair

Margaret Clark

Los Angeles County Solid Waste Management Committee/ Integrated Waste Management Task Force

Mayor Pro Tem, City of Rosemead

KM:fm

P:\...\TASK FORCE\Task Force\Letters\2015\Request4infoNupdatesDPR

Enc.

cc: Supervisor Michael D. Antonovich, Mayor

Supervisor Sheila Kuehl

Each Member of the County of Los Angeles Regional Planning Commission

Department of Regional Planning (Richard Bruckner, Maria Masis)

Sunshine Canyon Landfill – Technical Advisory Committee (Lisa Webber, Jon Sanabria)

Sunshine Canyon Landfill – Community Advisory Committee (Ken Ashford, Becky

Bendikson, Wayde Hunter)

Each Member/Alternate of the Los Angeles County Integrated Waste Management

TaskForce

Each Member of the Task Force Facility and Plan Review Subcommittee

GAIL FARBER, Director

COUNTY OF LOS ANGELES

DEPARTMENT OF PUBLIC WORKS

"To Enrich Lives Through Effective and Caring Service"

900 SOUTH FREMONT AVENUE ALHAMBRA, CALIFORNIA 91803-1331 Telephone: (626) 458-5100 http://dpw.lacounty.gov

ADDRESS ALL CORRESPONDENCE TO: P.O. BOX 1460 ALHAMBRA, CALIFORNIA 91802-1460

IN REPLY PLEASE EP-5

Mr. Rob Sherman, General Manager Sunshine Canyon Landfill Republic Services, Inc. 14747 San Fernando Road Sylmar, CA 91342-1021

Dear Mr. Sherman:

October 22, 2014

SUNSHINE CANYON CITY/COUNTY LANDFILL CONDITIONAL USE PERMIT NO. 00-194(5) ODOR MITIGATION MEASURES

Pursuant to Condition No. 45.N of the Sunshine Canyon Landfill Conditional Use Permit (CUP) we are hereby requiring Republic Services to implement additional corrective measures as specified under "Corrective Measures" below to mitigate the odor nuisance resulting from activities related to the operation of the Sunshine Canyon Landfill (Landfill).

Background

From November 2008 through September 2014 the Landfill generated over 6,000 odor complaints from nearby residents and community members and received 99 Notices of Violation from the South Coast Air Quality Management District (SCAQMD) for discharging such quantities of air contaminants to cause injury, detriment, nuisance, or annoyance to a considerable number of persons, in violation of SCAQMD Rule 402 (Nuisance), and California Health and Safety Code Section 41700. During that period, the SCAQMD and the County of Los Angeles Department of Public Works each under its own authority imposed various corrective measures to control and reduce odors emanating from the Landfill.

In March 2010 the SCAQMD issued a stipulated Order for Abatement followed by three stipulated Amended Orders for Abatement. Collectively, the Orders imposed a series of conditions including making enhancements to the landfill gas collection system to address the odor nuisance. Additionally, in September 2010 Public Works required corrective measures be implemented at the Landfill to reduce odors, such as requiring an Odor Mitigation Plan to be submitted and implemented by Republic; requiring that Republic cover disposed solid waste with a minimum of 9-inches of compacted soil at the end of each operating day in lieu of using tarp or other alternative daily cover; and requiring that Republic discontinue its practice of peeling back the daily cover at the beginning of the next operating day.

Mr. Rob Sherman October 22, 2014 Page 2

Despite the various structural and operational enhancements that have been implemented at the Landfill over the past four years, odor complaints still continue at significant levels.

In a concerted effort to further reduce odors emanating from the Landfill an Interagency Working Group comprised of the SCAQMD, Sunshine Canyon Landfill Local Enforcement Agency (SCL-LEA), City of Los Angeles Department of City Planning, County of Los Angeles Department of Regional Planning, and the County of Los Angeles Department of Public Works developed a set of recommendations to supplement previous and ongoing odor reduction measures at the Landfill (see enclosed Memorandum dated June 24, 2013). Measures recommended by the Interagency Working Group are to be implemented by the agencies within their respective areas of purview and authority.

Corrective Measures

Public Works considered the June 24, 2013, recommendations of the Interagency Working Group, in conjunction with other measures that are within Public Works' purview and authority, and identified the following measures that are of highest priority.

Condition No. 45.N of the CUP provides as follows: "The Permittee shall submit a quarterly report to the Director of Public Works identifying: (1) all fugitive dust and odor complaints from local residents that the Permittee has received for that quarter regarding the Landfill; (2) all notices of violation issued by the SCAQMD or the County LEA; and (3) all measures undertaken by the Permittee to address these complaints and/or correct the violations. The Director of Public Works and DPH-SWMP shall each have the authority to require the Permittee to implement additional corrective measures for complaints of this nature when such measures are deemed necessary to protect public health and safety." Republic is hereby required to implement the following corrective measures pursuant to CUP Condition No. 45.N, within the timelines specified below:

A. Landfill Gas Management

- Effective immediately, for newly completed cells, install a minimum of three vertical gas extraction wells per acre and horizontal collectors at every other lift. For cells that will be inactive for more than 60 days horizontal gas collectors must be installed within the top lift.
- 2. At a minimum for each existing and future developmental cell calculate the in-place density of fill material taking into account the daily soil cover, and calculate the radius of influence as well as spacing for vertical gas extraction wells and horizontal gas collectors based on that density. Areas with different site characteristics may require separate calculations of in-place densities. These calculations and well spacing shall be submitted to Public Works for

approval with copies to SCAQMD and SCL-LEA within 60 calendar days from the date of this letter.

- 3. Based on the radius of influence calculated in Item No. 2, above propose a schedule for installing the appropriate number of vertical gas extraction wells as well as horizontal gas collectors. The proposed installation schedule shall be submitted to Public Works for approval with copies to SCAQMD and SCL-LEA within 90 calendar days from the date of this letter.
- 4. Provide three 3-feet by 2-feet printed copies, and an electronic file (Portable Document Format and AutoCAD) of maps including a bar scale using approximately 1:300 scale, depicting:
 - a. Sheet 1: Locations of all vertical gas extraction wells currently in place at the Landfill, clearly distinguishing between those wells that are currently operational from those which are not in commission. Wells that are currently operational shall also depict, to scale, the radius of influence calculated in Item No. 2 above.
 - b. Sheet 2: Locations of functioning wells as well as any new wells planned for future installation, including the radius of influence shown to scale, and their proposed schedule for installation.

The maps shall be submitted to Public Works, SCAQMD, and SCL-LEA within 90 calendar days from the date of this letter.

5. Recalculate the efficiency of the Landfill Gas Management System (LGMS) annually taking into account additional landfill gas that is generated due to increases in the total in-place disposal volume. Within six months of the date of this letter, describe the methodology used in calculating efficiency as well as a comparison of landfill gas generation versus capture rate by month, to Public Works, SCAQMD, and SCL-LEA. Thereafter, by April 30th of each year, as deemed appropriate by Public Works in consultation with the SCAQMD, submit gas generation projections and monthly LGMS efficiency calculations to Public Works, SCAQMD, and SCL-LEA. Landfill Gas Management System efficiency calculations shall also demonstrate the adequacy of landfill gas destruction capacity in the event the Gas-to-Energy facility is not functioning due to various circumstances including maintenance or repairs.

B. Intermediate Cover Areas

- 6. Title 27, Section 20700 of the California Code of Regulations requires that compacted earthen material of at least 12-inches in thickness be placed on all surfaces of fill where no additional solid waste will be deposited within Effective immediately, Republic shall visually inspect all intermediate cover areas on a daily basis for any fissures, cracks, or settlement in order to prevent emissions of landfill gas through the intermediate cover surface. Such inspections shall include areas identified in SCAQMD's Rule 1150.1 reports where methane levels have measured greater than 500 parts per million (instantaneous method) at the surface at a frequency greater than once every quarter. Areas of exceedances shall be repaired and re-tested within 10 calendar days from the exceedance, and monitored on a monthly basis until methane levels subside to the allowable limit. Daily logs describing the results of such monitoring and any repairs shall be provided to the SCAQMD, SCL-LEA, and Public Works within 15 days after each reporting month.
- 7. Should surface emissions from intermediate cover areas continue to be released in quantities above the SCAQMD standards, any of the following additional measures may be required:
 - a. Install a minimum of three vertical gas extraction wells per acre and horizontal collectors;
 - b. Apply a thicker soil cover upon the intermediate cover areas or utilize low hydraulic conductivity material such as clay;
 - c. Upgrade intermediate cover areas to meet final closure standards if surface emissions on intermediate cover areas persist and other methodologies have not been effective in reducing surface emissions below regulatory standards; and
 - d. Use an alternative material on top of the intermediate soil cover to control surface emissions.
- 8. Submit plans showing slope angles not to exceed a ratio of 3:1 on daily and intermediate slopes for future cell design, sequencing, and fill operations, to allow for better compaction of the daily and intermediate soil cover. Slopes that are inactive for less than 30 days may exceed the 3:1 ratio, but may not exceed a slope ratio of 2:1. The plans shall be submitted to Public Works, SCL-LEA, and City of Los Angeles Department of City Planning, at least 90 calendar days prior to any new cell construction.

C. Odiferous Loads Management

- 9. Submit a detailed description of how odiferous loads are being identified and processed at the Landfill, including the following:
 - a. Republic's definition of "odiferous loads;"
 - b. Odiferous Loads Management Procedures at the Landfill:
 - Most current protocol by Landfill personnel for identifying, logging, and managing potentially odiferous loads, including medical waste, food waste, or animal waste;
 - ii. The number of loads checked per day to determine whether or not loads are odiferous. Beginning January 1, 2015, the Landfill shall check no fewer than three percent of the daily loads for potentially odoriferous materials including those containing treated medical waste, food waste, or animal waste;
 - iii. The number of incidents per month where loads were identified as odiferous, including descriptions of such loads and the generators;
 - c. All incidents where odiferous loads were turned away from the Landfill, disposed of at the Landfill as an odiferous load, or otherwise managed, from January 2009 to present.
 - d. Protocol for identifying sources that frequently deliver odiferous loads to the Landfill, which may include any particular materials recovery facilities/transfer stations, Republic and non-Republic operated trucks, direct haul customers, or self-haulers.
- 10. All items listed under Item No. 9 shall be submitted to Public Works within 45 calendar days from the date of this letter for review and/or approval.

D. Monthly Activity Reporting

11. On a monthly basis Republic shall provide a report to Public Works and the SCL-LEA listing operational activities and occurrences that have taken place at the Landfill, and any other events from which any correlations could potentially be derived as contributory to any cumulative odor impacts. The report shall contain a table showing the date, time, location, nature of occurrence, any associated corrective actions, wind direction, and barometric pressure (see enclosed sample table). Reports shall be submitted by the 15th day of each month for the previous month and include but not be limited to the following information:

- a. Operational activities including, but not limited to: construction, installation, repairs, or removals of any permanent and temporary environmental control systems, such as landfill gas control/monitoring systems (including operational and decommissioned vertical gas extraction wells and horizontal gas collectors); drainage and grading facilities; surface water and ground water quality control/monitoring system; leachate collection and removal system; and sewer system.
- b. Any breakdowns, malfunctions, or temporary shutdowns of any permanent and temporary environmental control systems, including but not limited to flares, components of the gas-to-energy plant; sewer system; and leachate collection and removal system.
- c. Identification of any odiferous loads arriving at the Landfill including whether it was rejected or disposed of on-site.
- d. Observations of any fissures, cracks, or settlement on or in the vicinity of the filled areas.
- e. Any exceedances measured per SCAQMD Rule 1150.1.

The above corrective measures shall be in addition to the corrective measures that Public Works imposed on September 27, 2010. Consistent with the enclosed memorandum dated June 24, 2013, Public Works will consider Republic's request to allow the partial peel back of daily soil cover that was applied the previous day under certain conditions once corrective measures pertaining to the LGMS have been implemented and the odor nuisance has been abated.

Penalty Provision

Failure to implement any of the corrective measures mentioned above shall constitute a violation of the CUP and be subject to the penalty provision described in Condition No. 11 of the CUP.

Public Works reserves the authority and discretion to modify or apply any additional corrective measures, as deemed necessary, in accordance with the provisions of the CUP.

Mr. Rob Sherman October 22, 2014 Page 7

If you have any questions, please contact me at (626) 458-3521, Monday through Thursday, 7 a.m. to 5:30 p.m.

Very truly yours,

GAIL FARBER

Director of Public Works

EMIKO THOMPSON

Senior Civil Engineer

Environmental Programs Division

moto Thompson

EKT:dy

P:\Sec\Letter to Republic Odor Measures

Enc.

cc: South Coast Air Quality Management District (Mohsen Nazemi, Edwin Pupka)

Sunshine Canyon Landfill Local Enforcement Agency (Gerry Villalobos, David Thompson)

Department of Regional Planning (Maria Masis, Iris Chi)

Department of Public Health (Gerry Villalobos)

City of Los Angeles Department of City Planning (Ly Lam)

Sunshine Canyon Landfill Technical Advisory Committee (Lisa Webber, Jon Sanabria)

Sunshine Canyon Landfill Community Advisory Committee (Becky Bendikson,

Wayde Hunter)

Members of the Los Angeles County Solid Waste Management Committee/Integrated Waste Management Task Force

Date:

June 24, 2013

To:

Sunshine Canyon Landfill Interagency Task Force on Community Odor Mitigation

Mr. Mohsen Nazemi, Deputy Executive Officer South Coast Air Quality Management District

Ms. Cindy Chen, LEA Program Manager Chief, Solid Waste Management Program Los Angeles County Public Health Department, Environmental

Services Solid Waste Program

Ms. Ly Lam, Senior Management Analyst, Mr. Nick Hendricks, City Planner Los Angeles City Planning Department

Ms. Maria Masis, Supervising Regional Planner

Los Angeles County Department of Regional Planning

Ms. Emiko Thompson, Senior Civil Engineer Los Angeles County Department of Public Works

From:

Wayne Tsuda, Program Manager

Sunshine Canyon Landfill Local Enforcement Agency

Subject:

Sunshine Canyon Landfill Odor Mitigation Program Recommendations

The Sunshine Canyon Landfill Interagency Task Force (Task Force) has been researching and evaluating best management practices to mitigate odors at the Landfill. This has resulted in a compilation of additional operational and programmatic recommendations to supplement the ongoing odor reduction efforts currently in place at the Landfill.

The recommended measures would be implemented in phases by the respective agencies within their areas of purview and authority, as they determine appropriate. Upon their implementation, monitoring of the measures would also be the responsibilities of the respective agencies. If odors persist, further mitigation measures are to be implemented until the odor problem is fully mitigated.

These recommendations have been developed collectively by the members of the Interagency Task Force comprised of the following agencies:

- · South Coast Air Quality Management District, Task Force Chair
- Sunshine Canyon Landfill Local Enforcement Agency
- Los Angeles County Department of Public Works
- Los Angeles City Planning Department
- Los Angeles County Department of Regional Planning
- Los Angeles County Department of Public Health
- E. Tseng and Associates, Consultant to SCL LEA

Sources and Types of Odors

There are two identifiable types of odors: 1) fresh trash smells, and 2) odors associated with landfill gas generated from older decomposing trash. Landfill gas is the carrier mechanism of the odiferous compounds generated by the decomposition of the solid waste. Odor types can generally be characterized as fresh trash smells, landfill gas odors, and/or a combination of the above. Sources of fresh trash odors and odors associated with landfill gas may be attributable to any one or combination of the following potential sources:

- 1. Odors from vehicles delivering trash for disposal;
- 2. Odors associated with any litter and/or liquids that may fall from the vehicles delivering trash for disposal;
- 3. Odors from vehicles that are waiting in queue to dump;
- 4. Odors from the trash truck unloading process at the tipping face area;
- 5. Odors from fresh trash on the working face before it is covered;
- 6. Odors from the trash/litter carried into the neighborhood by winds;
- 7. Trash odors carried by landfill gas which pass through the fresh trash that has been disposed and/or placed upon the working face during operational hours;
- 8. Fresh trash odors carried by landfill gas through the daily cover; the odor that passes, during closed hours, through the fresh trash that has been disposed and/or placed upon the working face and daily cover;
- Odors may be carried into the neighborhood via the water spray used to mitigate
 the odors as odorous compounds attaching themselves to heavier droplets of
 water as opposed to odorous compounds that otherwise may be dispersed;
- 10. Odors from "older" decomposing trash that are not captured by the landfill gas collection system;

- 11. Odors which result from operational activities associated with landfill repair and maintenance such as landfill gas (LFG) collection well installation, trenching, well repair, equipment breakdowns, and shutdowns, etc.;
- 12. Other odors are occasionally present and may contribute to complaints reported from the community. These include sources such as leachate collection and treatment system, portable toilets, naturally occurring sources associated with the adjacent oil field and from decomposition of plants that are part of the natural habitat areas and/or from plants that have not taken root on the intermediate (and other) cover areas, or odor sources in the community such as manure from horse properties and curbside trash collection.

Source Materials

The primary "source materials" of the odors are from non-hazardous municipal solid waste (MSW), particularly components that are readily decomposable and putrescible materials, such as food waste from homes and restaurants, etc. and from materials that decompose over time to form odiferous compounds within the landfill. Greenwaste (e.g., cut grass) can be odiferous if the grass has been decomposing for a week prior to pickup and disposal at the landfill. Regulated wastes which have been treated (e.g., autoclaved regulated medical waste) are defined as non-hazardous MSW and can be particularly odiferous. The sources of MSW are from residences, businesses, government, schools, industry, and institutions.

Analysis of Odor Complaints and Violations

Since 2008, complaints received by SCAQMD alleging odors from the landfill have substantially increased. These complaints are investigated by SCAQMD field staff and those verified resulted in notices of violation. Other actions taken by the SCAQMD include citations for permit conditions and surface emission exceedances.

The "fresh trash" odor complaints generally occurred during daytime hours (6 AM to 6 PM) and account for approximately a quarter of all verified odor complaints for which the Landfill has been alleged as the source of those odors. Based on SCAQMD's data, potential sources of "fresh trash" odors include:

- transportation of odorous trash through the community;
- the gueuing of trucks near or at the landfill and;
- the depositing of odorous trash at the working face during landfill operations. On Mondays or after holidays there may be higher numbers of odor complaints due to the decomposition of trash that has been collected and kept for longer periods prior to disposal.

Calls to SCAQMD during the evening hours (6 PM to 6 PM) were primarily attributable to landfill gas odors which accounted for approximately two-thirds of the verified complaints, based on AQMD's 2012 data. Odors from landfill gas can be caused by the release of gas from the landfill that is not captured by the existing landfill gas collection system. A significant number of complaints attributed to landfill gas releases is suspected to be associated with the following sources:

- a landfill gas collection and flare system that is undersized for the amount of gas being produced and that has experienced frequent shutdowns due to new equipment installation, equipment breakdowns, and equipment maintenance activities;
- landfill gas collection well installation procedures which allow the release of significant amounts of landfill gases;
- soil surfaces that have fissures, crevices or where erosion has occurred creating pathways for landfill gas to escape; and
- local weather patterns affecting wind direction and intensity

Holistic Approach to Odor Mitigation Options

The Task Force has determined that the optimal approach to mitigate odors emanating from Sunshine Canyon Landfill would require the implementation of measures to manage the sources of both fresh trash odors and landfill gas odors through best available technology and best management practices.

The optimal approach requires focusing on the best combination of practical preventative programs, facility design features, operational practices, maintenance protocol, and odor mitigation programs that provide the optimal operating conditions of the landfill gas collection system.

Based on this approach, the Task Force has determined that the highest priority for reducing complaints related to landfill gas is to:

- optimize the operation of the landfill gas collection system for maximum effectiveness based on accurate information on existing conditions;
- to assure that the landfill gas collection system is properly constructed and operated at the design criteria; and
- the landfill gas collection system be properly maintained and capable of sustaining temporary emergencies, such as power outages or extreme weather conditions.

Recommendations:

The Task Force has reviewed the various listed odor mitigation measures and recommends the following steps be taken immediately:

Operational Changes

- Require odor control operators with portable mobile sprayers containing odor neutralizer to apply the neutralizers on the waste for specific loads at the working face on a specific load-by-load basis. For loads that are identified as odiferous loads such as treated medical waste or putrefied food, the portable/mobile sprayer and operator must be situated at the tipping location so that the odor neutralizer can be used during the truck unloading operation.
- Require treated medical wastes to be prioritized for immediate burial at the working face.
- All areas of intermediate cover (minimum of 12 inches of compacted soil) must be maintained to prevent the emission of landfill gas through the cover surface.
- Require that an additional vegetative layer (with plants and soil with compost mix) be placed on top of intermediate cover areas, which would also act as a biofilter layer for emissions that may be venting through the cover. Surface emissions must be continually monitored, including areas with established vegetative covers to ensure that the underlying intermediate cover does not develop cracks and seeps.
- Intermediate cover areas with surface emissions beyond regulatory limits must be repaired within regulatory time limits or sooner if possible. Should surface emissions of LFG continue to be released in quantities above the allowable SCAQMD thresholds from intermediate cover areas after completing the landfill gas collection system upgrades, the following may be required:
 - a. Install new landfill gas collection wells as directed by SCAQMD. Other methodologies may be employed such as, but not limited to:
 - b. A thicker intermediate soil cover or the use of a more impermeable material such as clay may be specified;
 - c. The use of a synthetic impermeable removable non-porous geosynthetic liner on top of the intermediate soil cover (e.g., Closure Turf or equivalent) that is anchored and connected to the landfill gas collection system
 - d. Should intermediate cover methodologies fail or prove to be infeasible, intermediate covers shall be upgraded to meet final closure standards if surface emissions on intermediate cover areas persist.
- Require the Landfill Operator to maintain an ongoing program of identification, monitoring, upgrading/repairing and replacing non-performing wells, and provide monthly reports to the SCAQMD for distribution to the Task Force.
- Consider allowing the peeling back of the daily soil cover that was applied the previous day under prescribed conditions which may include:

- a. to be in conjunction with the proper design, construction, and maintenance of the landfill gas collection system
- b. to be allowed only Tuesday through Friday;
- c. approximately three to six inches of soil cover to remain in place;
- d. soil to be removed in stages to match the need for tipping, disposal and compaction; and
- e. after ceasing filling operations on Saturday, a full 9-inch cover is to be placed and remain in place on Mondays.
- Landfill Operator shall submit and implement a plan for using a negative air pressure system to prevent landfill gas from escaping into the atmosphere during gas collection well installations and trenching activities, and from the excavated refuse material.
- Require the Landfill Operator to continuously evaluate the effectiveness of current maintenance procedures including the adequacy of gas well tuning and balancing frequencies, and the efficiencies of the flares and gas wells. The Landfill Operator must also routinely fine tune, maintain, and repair gas wells.
- Shutting down flares and taking the gas collection system off-line for maintenance purposes during adverse wind conditions should be prohibited.
- Monitor the progress of the Landfill Operator to expedite the installation of backup generators to ensure the continuous operation of all flares in the event of a power failure at the site.
- Consider a pilot project for the Landfill Operator to demonstrate the effective use
 of a biodegradable or thermodegradable plastic approved as Alternative Daily
 Cover (ADC) or combinations of ADCs which meets the statutory performance
 standards that apply.

Actions Related to Overall Facility Design

• Require the Landfill Operator to determine the actual in-place waste density and revise the vertical and horizontal landfill gas well spacing to reflect actual conditions at the site, including cover requirements. The Operator must also reevaluate the existing landfill gas collection system design and expedite installation of new and replacement wells to achieve desired "well density" according to the findings. Additional field analysis such as horizontal and vertical gas permeability analysis (and resulting permeability ratio data) should be used to evaluate the actual radius of influence which should be used to determine the overall landfill gas collection efficiency. The Information used in calculating the radius of influence and designing the landfill gas system shall be shared with Task Force members for their review and concurrence.

- Require the Landfill Operator to plant trees for the purpose of creating a vertical
 physical barrier. A planted wall shall also be used to mount a misting system to
 control odors in appropriate locations. Strategically placed orchard fans should
 be incorporated to create as much dispersion of the funneled air flow out of the
 entrance of the landfill.
- Require the Landfill Operator to review and revise cell design, sequencing, and fill operations and apply the revised design in all new cell construction in order to minimize the slope angle of daily and the steeper intermediate slopes, which will allow for better compaction of the daily and intermediate soil cover. Cell design, sequencing, and fill operations should consider minimizing the surface area of steeper intermediate slopes in future cell development of the landfill.
- Require the Landfill Operator to explore new industry standards, best
 management practices and emerging technologies to supplement odor reduction
 efforts at the landfill and cooperate with Task Force member agencies to
 implement pilot projects where feasible such as electronically reporting the
 monitoring and corrective actions on a monthly basis.

Verification of the Effectiveness of Various Odor Mitigation Measures

- Require the Landfill Operator to recalculate the LFG collection system efficiency each at the beginning of each calendar year to take into account the additional landfill gas being generated by the increase in the overall in-place disposal tonnage of the preceding calendar year. The data and the methodology utilized in the calculation of the LFG collection system efficiency shall be provided to the SCAQMD for distribution and review by the Task Force members.
- Require the Landfill Operator to measure the in-place density of trash in the
 areas with the 9 inch daily soil cover with a Gamma Density Logger for the
 purpose of calculating the radius of influence. Both the density of the refuse at
 different depths and the density of the daily cover shall be measured. If the
 radius of influence is determined to be less than ideal, additional landfill gas
 extraction wells should be required (unless increasing the vacuum can increase
 the radius of influence without intrusion of atmospheric oxygen).
- As a supplement to the required ongoing surface emissions monitoring, the Landfill Operator may be required to conduct a research project as part of which a large sheet of synthetic, impermeable material is to be installed on selected locations of intermediate cover to determine any landfill gas emissions through intermediate cover.

As these proposed measures, through its collective implementation, are intended to mitigate odors at the Sunshine Canyon Landfill, agencies should monitor the effectiveness of these measures within their respective areas of purview. Based on the

findings of such monitoring the mitigation measures may be modified, added, or discontinued accordingly, until the odors at the landfill are mitigated.

Documents reviewed include studies and other documents prepared by Republic, its consultants, South Coast Air Quality Management District and related correspondence. Technical references and documents that were reviewed are available in electronic format upon request from the SCL LEA. Other documents that were utilized are posted on the SCL LEA web site www.scllea.org in the "Special Projects" page and can be downloaded from the "Attachments" section at the bottom of the Special Projects page.

Attachment

ATTACHMENT 1 Technical Comments

The following notes are provided as background for the recommendations provided. Please note that the Task Force will continue its research into best management practices for odor mitigation at Sunshine Canyon Landfill (Landfill).

Improving LFG Collection Efficiency

The Task Force recognizes that proper design, operation, and maintenance of a LFG collection system is needed in achieving a high collection efficiency of the LFG gas and thus controlling odors associated with landfill gases. Landfill gas collection systems for operating landfills do not operate at 100% collection efficiency for the total amount of landfill gas that is generated. The danger of oxygen intrusion and the potential for subsurface oxidation (underground fires) have to be avoided therefore, the landfill gas collection system design and operations is a constant balance of trying to collect the largest volume of landfill gas generated without creating overdraw in which atmospheric oxygen is drawn through the surface or other potential paths into the collection system.

While LFG control systems do not operate at 100% collection efficiency, the Task Force recommends that the design capacity for the LFG collection system should be sized for 100% collection efficiency for the maximum rate of LFG generation volume that is anticipated to be produced during the life cycle of the landfill, rather than a default 75% average value, or even the upper end, 85% of the range value. The Task Force believes it would be prudent to have a safety factor to accommodate periods in which the rate of landfill gas generation may be increased beyond the "average" rate of generation.

Methodologies for Calculating Landfill Gas Collection Efficiency

There are many methods of computing "collection efficiency" depending upon how the method is utilized for the calculation of the total volume of landfill gas generated. For this report we have reviewed the US EPA's AP-42 (Federal Emissions Standards) as referenced by the Landfill operator in their evaluation of their landfill gas collection system.

The United States Environmental Protection Agency (US EPA) document, AP- 42, states that a 75% LFG collection efficiency as a "typical value", but typically reported a range of values from 60% to 85%. Puente Hills, one of the Los Angeles County Sanitation District's (LACSD) active landfills, is currently achieving 95%+ LFG collection efficiency. The LACSD utilizes a different methodology from the US EPA called the Integrated Surface Methane (ISM) Industrial Source Complex (ISC) air dispersion model to estimate LFG collection efficiencies of their landfills.

In the Integrated Surface Methane/Industrial Source Complex method, LACSD defines collection efficiency as:

Collection Efficiency = Collection / (Collection + Emission)

Whereas, US EPA AP-42, the LandGEM model utilized by both the Landfill operator and SCAQMD, defined collection efficiency as:

Collection Efficiency = Collection / Generation

where generation is simulated using the LandGEM model. In an ideal situation, the collection efficiencies would be the same under both methods.

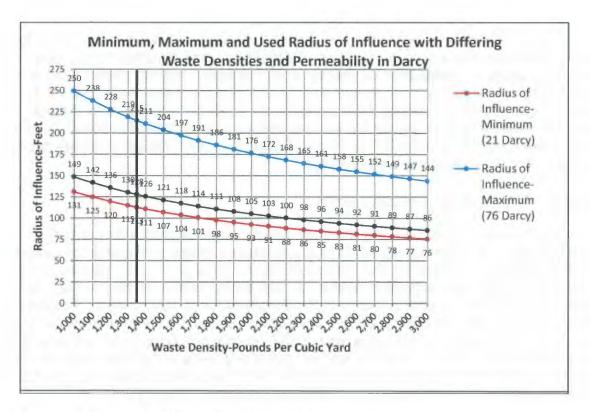
The Task Force cautions those looking at landfill gas collection efficiency to be aware of the two methodologies and possible differences in stated results.

Current Status of Landfill Gas Collection System Efficiency

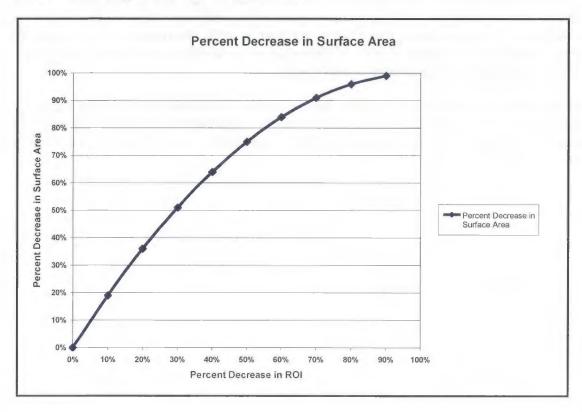
Whatever the potential strengths and weaknesses and/or differences in the calculated "collection efficiency", since the initial Task Force meeting of regulatory agencies in the summer of 2011, the Task Force has maintained that most of the reported landfill odors (occurring during closed hours) are resulting from an inadequate landfill gas system (overall capacity and the associated gas collection well / piping system). The Task Force has reviewed documents received from the Landfill operator regarding the evaluation of the landfill gas collection system ("Evaluation of the Existing Landfill Gas Collection and Control System, Sunshine Canyon Landfill", prepared by Bryan A. Stirrat, dated November 29, 2011).

The Task Force notes that as of January 2013, significant improvements have been made by the Landfill operator to the landfill gas collection system as the result of the SCAQMD' Stipulated Orders of Abatement and by the Landfill operator voluntarily, and that the collection capacity is much more capable than it was in 2011 or 2012.

Landfill operations have significantly changed over the years and so has the solid waste composition. With the passage of AB 939 (Sher - Integrated Waste Management Act of 1989), the composition of municipal solid waste has changed significantly. In the past when the in-place landfill trash densities were much lower in value than those achievable in today's operating practices (1,900+ pounds per cubic yard), a six inch daily soil cover, although a discrete layer when applied, would eventually be indistinguishable with the solid waste because the soil would disperse and move into the interstitial volume and just become part of the overall solid waste mass. This can be observed in borings taken from old landfill; no distinct "daily soil cover" layer is observable.


The Task Force believes that using the concept of intrinsic permeability, one can generally correlate flows of water to flows of landfill gas and therefore to the flow of odors (e.g., odorous compounds carried by landfill gases). Intrinsic permeability is a characteristic of any porous medium and entirely independent of the nature of the fluid – whether gas or liquid. Simplifying from Darcy's Law for water and gas flow through a permeable medium and solving for the intrinsic permeability coefficient in common, and thus one can calculate volumetric flow of landfill (higher density, less permeability, more soil, higher density, equals less permeability).

Radius of Influence of Gas Collection Wells


A primary issue discussed between the Task Force members dealt with the radius of influence needed for effective collection of the generated landfill gases and the overall collection efficiency needed for the control of odors. One of the key factors in the design of a landfill gas collection system is the determination of the needed well spacing. One of most important factors is the density of the in-place mass. The initial density used by the Landfill operator's consultant, Bryan A. Stirrat (BAS) for the calculation of the radius of influence was 1,350 pounds per cubic yard (assumption used in calculation). The SCL LEA's opinion is that this value is too low, which would result in a radius of influence that this greater and thus a less dense well location density needed for achieving a specific landfill gas collection efficiency.

The radius of influence is important due to the volume of gas being collected; if using the volume of a cylinder as the theoretical volume of the effective vacuum, the volume is proportional to the square of the radius, so that a 10% decrease in the radius of influence results in an impact of 20% of the volume (or surface area of the circle) from which the landfill gas collection well draws from.

Below are several graphs that illustrate the relationship between density and radius of influence. The SCL LEA's consultant calculated the approximate radius of influence as a function of density, with a range (minimum / maximum) with different permeability values.

Source: E.Tseng and Associates, Feb. 2013

Source: E.Tseng and Associates, Feb. 2013

The estimated in place density of trash (in the areas where the 9 inch daily soil has been a requirement) by doing a rough calculation based on data supplied by the Landfill operator.

Data used in the density calculation:

- Days between flyovers from 2/28/11 and 2/10/12 = 347
- Tonnage of waste received at the gate and buried between flyover dates is 2,301,010 tons
- Total weight of 9" soil cover approximated at 896,000 cubic yards at 105 pounds per cubic foot is 1,270,080 tons
- Volume of consumed airspace between flyover dates = 3,133,472 cubic yards
- Add 1,272,080 tons to 2,301,010 tons for total weight of materials in the 3,133,472 cubic yards volume

The actual density of the materials (combined solid waste and daily/intermediate cover) that should be used as the density factor for the calculation of the radius of influence is approximately 2,269 pounds per cubic yard. The density of the solid waste (by itself) at Sunshine is calculated to be approximately 2,056 pounds per cubic yard. According to the Los Angeles County Sanitation Districts (LACSD), the average density of the inplace trash only (called LF waste density) for PHLF is about 1,960 lbs/yd³. Puente Hills Landfill uses a 50:50 mix of shredded greenwaste with clean soil as daily cover, and the average density of in-place trash and daily/intermediate covers (airspace utilization density) for Puente Hills Landfill is 1,405 lbs/yd³.

Also, as previously stated, the waste composition has significantly changed compared to the development of the US EPA AP - 42 standards. Municipal solid waste has more moisture content, is denser, and the initial landfill gas generation will occur quicker and produce greater volumes that municipal waste from the pre-AB 939 implementation. In recognition of this change, the Landfill operator utilized a more recent composition of the municipal waste stream in its calculation of the landfill gas generation. As of December 2012, the Landfill operator's consultant BAS, is now utilizing approximately 1,700 pounds per cubic yard for calculating the radius of influence (ROI) of landfill gas wells. If the estimated density of 2,269 pounds per cubic yard is used for the ROI calculations, the ROI will decrease to less than 100 feet, and when combined with an "overlap" of 30% - 40%, the needed well spacing will be significantly lower than the approximate 200 feet being utilized in the current design.

The general design spacing of the vertical gas collection wells at the Puente Hills Landfill calls for 150 – 200 feet spacing, with 200 feet being typical. Note that at Puente Hills Landfill, the landfill gas well spacing is similar to the design standard of that of Sunshine Canyon Landfill. The big difference is that the density of the mixed greenwaste and soil combination daily cover is much lower than that of the solid waste being disposed, which creates the increased permeability needed for landfill gas movement needed for optimum gas extraction and to promote downward flow of leachate.

BAS has indicated that there are limited well depths to 120 ft. in their designs for cell CC2 and that the density for 0-120 ft. is less than the average for 0-250 ft. depth (the max depth of cell CC2 refuse). BAS notes that the gas of most significance is that within the slotted depth of gas extraction well. However, landfill gas is being generated at all depths including depths beyond the slotted collection pipes. If there is no extraction vacuum, landfill gas pressure will build and eventually migrate to the ground surface and be released, where it is not collected.

Note that even if a daily soil cover of six inches instead of the current nine inches were used, the estimated density would decrease to approximately 2,221 pounds per cubic yard, and the resultant change in the radius of influence is a decrease of approximately two feet. In the literature review, both the SWANA MOLO course materials and also the CalRecycle training materials on landfill gas and/or leachate management recommend using alternative daily covers to promote leachate movement downward and to promote landfill gas collection (in recognition of the soil layer's ability to become an impediment to landfill gas movement and leachate flow.

As previously noted, the landfill gas collection system should be designed for 100% collection efficiency with a safety factor to deal with extraordinary gas generation (e.g., increased generation after wet weather). Even with the implementation of the landfill gas-to-energy project, the collection capacity should still be based on the volume of 100% landfill gas generation.

Considerations with Regard to the Daily Soil Cover Requirement

The Los Angeles County Conditional Use Permit (No. 00-194-(5)) under Item 45(N) can require Republic to implement additional corrective measures, in this case 9 inches of daily soil cover, when such measures are deemed necessary. The Task Force has received information that the use of 9 inches of daily cover soil, while effective at reducing fresh trash odors at the working face of the landfill, may slow down the vertical movement of leachate and gases across the landfill cells. Peeling back a portion of the 9 inch daily soil cover under prescribed conditions is an option being considered in combination with other odor mitigation measures to potentially enhance the efficiency of the gas collection system.

Summary

To summarize the Task Force's analysis, the highest priority and the most significant impact to reducing the odors related to landfill gas is to ensure the continued implementation of a well-designed, operated, and maintained landfill gas collection system. The optimal approach would focus on the best combination of facility design features, operational practices, practical preventative programs, daily and intermediate cover requirements, and odor mitigation programs that provide the optimal operating conditions of the gas collection system, to effectively collect the landfill gas that is generated and minimize unintentional releases of landfill gas.

At the same time, programs should also be implemented to mitigate the offsite migration of fresh trash odors in addition to measuring, verifying and documenting quantifiable environmental metrics utilized to benchmark and measure progress in the mitigation of odors.

Sunshine Canyon City/County Landfill Monthly Odor Event/Activity Reporting

For Reporting	Month of	
---------------	----------	--

D-1-(-)	Time			Note the second	Corrective Action		Wind Speed/	Barometric	Notice of	
Date(s)	Start	End	Location	Nature of Occurrence	Description	Date	Direction	Pressure	Violation	Comments
					-					
		<u> </u>						_		W154
										<u> </u>
1										
									:	
								<u> </u>		
								į		
							T :			
			<u> </u>							

Los Angeles County Department of Regional Planning

Planning for the Challenges Ahead

January 12, 2015

Margaret Clark, Vice Chair Los Angeles County Solid Waste Management Committee/ Integrated Waste Management Task Force 900 S Fremont Avenue Alhambra, CA 91803-1331

Dear Ms. Clark:

REQUEST FOR INFORMATION/UPDATE – EFFORTS BY THE INTERAGENCY WORKING GROUP TO MITIGATE ODORS AT SUNSHINE CANYON LANDFILL

This letter is in response to your letter dated December 11, 2014 regarding odor abatement efforts by member agencies of the Interagency Task Force on Community Odor Mitigation (Interagency Task Force). As you are aware, the Los Angeles County Department of Regional Planning is a member agency of this Task Force.

The Department of Regional Planning (DRP) and the Department of City Planning work closely on matters concerning Sunshine Canyon Landfill and the DRP concurs with the written response the City has provided to your Committee, dated December 23, 2014 to the abovementioned letter, specifically:

- The recommendations for odor mitigations provided in the June 27, 2013 letter from the SCL-LEA to the Sunshine Canyon Landfill Board of Directors still have the support of the Department of Regional Planning.
- Odors and landfill gas management mitigations are stipulated in the County's Mitigation Monitoring and Reporting Summary (MMRS) to Conditional Use Permit (CUP) 00-194, section 7.0 (attached). This document identifies public agencies that have jurisdiction regarding the monitoring and enforcement of specific mitigation measures, specifically SCAQMD and the LEA. Planning agencies are not directly involved in air quality enforcement and defer this task to the appropriate agencies.
- Aside from the odor issues, the landfill is at this time in overall compliance with the CUP conditions and MMRS mitigation measures. Air quality monitoring has not shown any evidence of imminent substantial risk to the health, safety, or welfare of the local community. No additional enforcement efforts are planned or warranted by the Department of Regional Planning at this time.

Response to LACSWMC/WMTF Request for Information January 12, 2015

Both City and County agencies will continue to work collaboratively with the Interagency Working Group to collectively address the odors at the Sunshine Canyon Landfill. Please address any future communications regarding this matter to the SCL-TAC.

Sincerely,

Jon Sanabria

Deputy Director of Planning

Co-chair, SCL-TAC

JS:MM

cc: Supervisor Michael D. Antonovich, Mayor

Supervisor Sheila Kuehl

The Regional Planning Commission – each member

Los Angeles County Integrated Waste Management Task Force and Facility and Plan Review

Subcommittee – each member

Ly Lam, Department of City Planning

Mohsen Nazemi, South Coast Air Quality Management District

Gerry Villalobos, SCL-LEA

SUNSHINE CANYON LANDFILL MITIGATION MONITORING AND REPORTING SUMMARY Conditional Use Permit 00-194-(5) and Oak Tree Permit 86-312-(5)

	7.03	7.02	7.01	7.0		
	The following odor/landfill gas monitoring program will be implemented for the landfill. The monitoring program complies with the requirements of the SCAQMD Rule 1150.1 and those of the County Department of Public Works. This program will include: (1) Sample probe installation. Monitoring	The gas collection system will be installed in phases, as each portion of the landfill is filled. The gas collection system will contain a network of gas extraction wells, collection piping and flaring facilities. Because landfill gas generation begins at lower levels of volume and increases with time, the gas will be initially flared until sufficient quantities are available for possible use as a renewable energy resource.	Landfill gases will be prevented from escaping to the atmosphere through control measures which also will effectively control odor. These control measures include (1) small 2 to 3-acre active fill areas, as deemed necessary; (2) covering the working face on a daily basis; (3) filling surface cracks in the cover material with clean dirt; (4) extracting landfill gases through the use of the landfill gas extraction system, and (5) compacting solid waste within 1 hour of its arrival at the working face.	ODOR/LANDFILL GAS	SEIR/FEIR MITIGATION MEASURE	Conditio
	Issuance of Permit to Construct and Operate. Monitoring programs conducted by permittee (monthly monitoring reports) and SCAQMD in accordance with permit requirements.	Approval of gas collection system plan and issuance of Permit to Construct and Operate.	Approval of gas collection system plan and issuance of Permit to Construct and Operate. Review and approval of periodic inspection reports of fill operations.		Monitoring action	Conditional Use Permit 00-194-(5) and Oak Tree Permit 86-312-(5)
	SCAQMD	SCAQMD	SCAQMD LEA		RESPONSIBILITY	k Tree Permit 86-312-(
	Permit issuance prior to commencement of landfill development. Monitoring throughout fill operations.	Permit issuance prior to commencement of landfill development.	Permit issuance prior to commencement of landfill development. Monitoring throughout fill operations.		TIMING	5)
7	Section 5 of Findings C#7 C#52 IMP-Part X	Section 5 of Findings C#7 C#52 IMP-Part X	Section 5 of Findings C#7 C#52 IMP-Part X		REFERENCE	

4902/Los Angeles County Sunshine Canyon MMRS

SUNSHINE CANYON LANDFILL

	- X;	
(where feasible) or as otherwise determined by the SCAQMD. All probes will be monitored to ensure that quantities of landfill gas beyond regulatory standards do not migrate offsite through the subsurface soils; (2) Integrated landfill surface sampling. The landfill surface will be periodically monitored to ensure that the average concentration of total organic compounds over the landfill surface does not exceed the SCAQMD's standard of 50 ppm; (3) Ambient air samples at the landfill perimeter. Periodic, 24-hour integrated gas samples and required meteorological data will be taken to assess any impact the landfill is having on air quality at the landfill perimeter; (4) Instantaneous landfill surface monitoring. Spot checks on the landfill surface will be made to determine the maximum concentration of total organic compounds measured as methane at any one point on the landfill's surface does not exceed the SCAQMD's standard of 500 ppm; and (5) Regular Monitoring and Annual Testing: LFG concentrations at perimeter probes, gas collection system headers, the landfill surface, and in ambient air downwind of the landfill shall be monitored once a month or less frequently as required by the SCAQMD.	SEIR/FEIR MITIGATION MEASURE probes will be installed at a spacing of 1,000 feet around the landfill perimeter	
as otherwise as otherwise AID. All probes ensure that gas beyond ot migrate office soils; sampling. The periodically the average tal organicall surface does is standard of required be taken to notifill is having l perimeter; are monitoring. The maximum tal organic sill surface will surface will the maximum tal organics methane at notifill's surface socapholes, headers, the ambient air fill shall be onth or less the SCAQMD.	RE cing of rimeter	MIT
	MONITORING ACTION	MITIGATION MONITORING AND REPORTING SUMMARY Conditional Use Permit 00-194-(5) and Oak Tree Permit 86-312-(5)
	RESPONSIBILITY	ORTING SUMMARY Tree Permit 86-312-(5
	TIMING	5)
	REFERENCE	

SUNSHINE CANYON LANDFILL MITIGATION MONITORING AND REPORTING SUMMARY onditional Use Permit 00-194-(5) and Oak Tree Permit 86-312-(5)

		Conditio	Conditional Use Permit 00-194-(5) and Oak Tree Permit	k Tree Permit 86-312-(5)	5)	
7.31		SEIR/FEIR MITIGATION MEASURE	MONITORING ACTION	RESPONSIBILITY	TIMING	REFERENCE
		The LFG collection system shall be adjusted and improved based on the quarterly monitoring data and annual stack testing results.				
7	7.04	Risks associated with the gas collection and flaring system shall be mitigated through use of flexible piping, flame arrestors, sensors, and automatic shutoff controls. Numerous safety shutdown devices have been designed and installed into the flare station, including a telephone auto-dialer, to provide emergency notification. All gas extraction equipment, including gas condensate and propane tanks, shall be adequately secured to prevent damage during a seismic event. Inspections of the gas collection and flaring system shall be performed after ground-shaking from an earthquake, and necessary action shall be taken to correct any potential problems.	Approval of gas collection system.	SCAQMD	Throughout fill operations	Section 5 of Findings C#7 C#52
7	7.05	Equipment operators involved in excavation shall be made cognizant of the potential presence of existing unrecorded subsurface wellheads. If a wellhead (or other unidentifiable obstruction) is encountered during construction, all excavation activities shall cease. The area will be cordoned off, and the landfill supervisor shall be called to determine whether the obstruction is an abandoned wellhead.	Monitor and adjustment of operations by permittee.	SCAQMD LEA Facility Manager	Throughout fill operations.	Section 5 of Findings C#7 C#52
7	7.06	If an odor problem should develop, appropriate control measures shall be implemented.	Monitor and adjustment of operations by permittee.	-SCAQMD	Throughout fill operations.	Section 5 of Findings C#7

4902/Los Angeles County Sunshine Canyon MMRS

SUNSHINE CANYON LANDFILL MITIGATION MONITORING AND REPORTING SUMMARY Conditional Use Permit 00-194-(5) and Oak Tree Permit 86-312-(5)

•	<u> </u>	CO.	~		1.11
	8.01	8.0	7.07		
(1) The widening and/or restriping and installation of traffic signals at the landfill entrance located on San Fernando Road, and	The permittee will install or fund traffic improvements at the landfill entrance and to local feeder highways deemed "warranted" by the City of Los Angeles. Warranted, means justified on the basis of established standards of the City and by accepted traffic engineering practices. As determined by the City, traffic improvements may include:	TRAFFIC/CIRCULATION	The permittee will recover and sell as much gas as is technically and economically feasible to reduce total air quality emissions from the landfill operations. It is expected that the technical and economic feasibility of commercial recovery and sale of landfill gas as a renewable energy resource will occur at levels below 40 MMCFD. The gas collection system will be installed in increments to allow for maximum gas recovery.	These measures include the application of daily cover material or more frequent application of the cover material to seal the landfill surface, or adjustments to the wells, equipment, and operation of the LFG collection and recovery system.	SEIR/FEIR MITIGATION MEASURE
	Review and approval of intersection improvement plans.		Inclusion of reports of fill operations in Biennial Monitoring Reports to Regional Planning Commission.		MONITORING ACTION
	LADOT		Facility Manager	Facility Manager	RESPONSIBILITY
measure has been completed.	This mitigation measure has been completed.		Throughout fill operations.		TIMING
	Section 5 of Findings C#57		Section 5 of Findings C#7 C#52 IMP-Part IV IMP-Part X		REFERENCE