Biomethane in California Common Carrier Pipelines: Assessing Heating Value and Maximum Siloxane Specifications

An Independent Review of Scientific and Technical Information

California Council on Science & Technology

Julia Levin, Bioenergy Association of California

Elijah Carder, Los Angeles County Public Works

Legislative and Regulatory Background

Assembly Bill 1900 (Gatto, 2012)

- Required CPUC to adopt standards for pipeline biomethane
- Required CPUC to adopt additional incentives and policies to promote instate production and use of biomethane and biogas

Senate Bill 840 (2016)

- Required CPUC to hire CCST to re-assess BTU and siloxanes standards and recommend changes
- CPUC must give due deference to CCST recommendations and adopt within 6 months of study's release

Legislative Background (continued)

Assembly Bill 2313 (Williams, 2016)

- Increases incentive offered to interconnect pipeline biomethane projects up to \$3 million / 50% of interconnection costs
- Requires CPUC to consider rate-basing interconnection before current program funds are expended

<u>Senate Bill 1383 (Lara, 2016)</u>

- Requires CPUC and other agencies to adopt additional incentives and policies to increase instate production and use of biomethane and biogas
- Adopted numerous incentives for dairy biomethane, but not for biomethane from diverted organic waste

Heating Value

- Mandate Ensure safe combustion and reliable heat delivery
- Current regulations 990 BTU/scf
- Shifting to 970 BTU/scf would not affect safety or operations
- Shifting to 950 BTU/scf could affect safety
- Maintain Wobbe number (WN)
 - WN measures interchangeability of gas

Siloxane

- Silica results from combustion of siloxane
- Silica particles have unclear health impacts when inhaled.
- Silica deposits can damage equipment and cause carbon monoxide emissions
- No standardized measurement protocol exists for dependable measurement for the specification of 0.1 mg Si/m3
- Current siloxane specifications could be below reliable detection limits
- Difficult to acquire project financing due to risk of not being able to meet specification and inject
- Very little data and involves large extrapolation from that data.

Additional Recommendations on Siloxanes

- Simplified verification regime for certain sources
- ASTM International process to adopt and test a standard test method
- Revisit the siloxane maximum standards.

Cost and Value of Biomethane

- Biomethane is a useful product from organic waste recycling facilities
- Local conditions may determine different end-uses, thus, all options are needed to develop facilities
- Biomethane options: on-site usage, trucking, private/direct pipeline, common-carrier pipeline
- Current incentives favor fuel utilization
- Common carrier pipeline injection is specifically needed in order to be able to distribute biomethane to end users and/or fuel stations
- Blending can be an option without revising injection specifications
- Thus, increased incentives are needed to increase pipeline injection
- CCST recommends the State examine differences in incentives

Impacts to Local Jurisdictions by EPD Staff

Anaerobic digestion (AD) infrastructure development

- Lowering Heating Value may help development
- Maintaining siloxane specifications may discourage development
- Co-digesters would not be eligible for relaxed siloxane verification
 End markets for recycled organic waste products
- Pipeline injection of biomethane needs to become an economically feasible option to create a marketable end product of recycled organic waste.

Public health and safety

 state to work with PUC and utilities to develop guidelines for blending biomethane with pipeline gas

Impacts to Local Jurisdictions (continued)

- State to subsidize testing and/or removal of siloxanes.
- Ensure biomethane producers are not charged for NG removed, mixed, and re-introduced into the pipeline for blending.
- Ensure regulatory bodies are not charged for regulating the blending process.
- State to work with local jurisdictions to identify locations where, and specifications for large portions of biomethane that do not meet current standards, to be safely injected for in-pipeline passive mixing.

Economic barriers

 The monetary incentive program for biomethane projects established by AB 2313 ought to be expanded beyond the \$40 million limit and the per project cap needs to be increased from 50% of interconnection costs up to 100%.

Questions?

Julia Levin
Executive Director
Bioenergy Association of California
JLevin@bioenergyca.org
www.bioenergyca.org

Elijah Carder
Management Assistant
Environmental Programs Division
Los Angeles County Public Works
Ecarder@dpw.lacounty.gov

Overview of Recommendations of CCST

Recommendation 1: Keep the Wobbe Number (WN) minimum requirements as they are now.

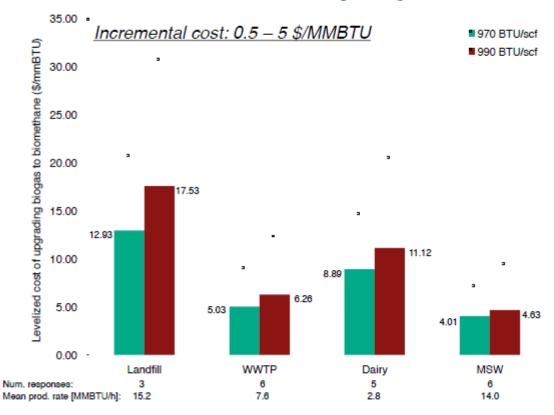
Recommendation 2: Reexamine regulations on HV minimum levels. Initiate a regulatory proceeding to examine the option of allowing biomethane satisfying current WN limits and all other requirements, but with a heating value as low as 970 BTU/scf.

Recommendation 3: Support a comprehensive research program to understand the operational, health, and safety consequences of various concentrations of siloxanes.

Recommendation 4: There is not enough evidence to recommend any changes to the maximum allowable siloxanes concentration at this time.

Recommendation 5: Consider the development of a reduced and simplified verification regime for sources that are very unlikely to have siloxanes, such as dairies or agricultural waste.

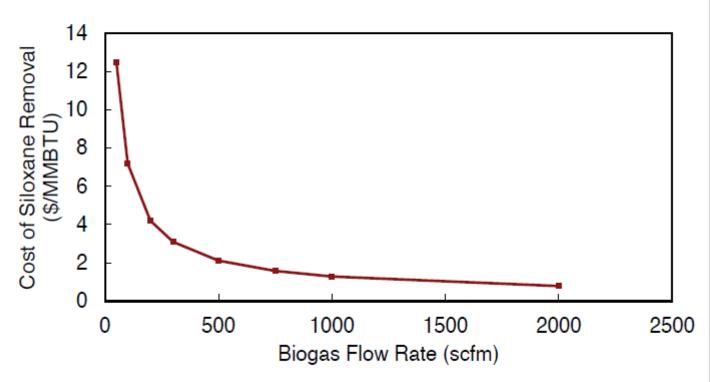
Recommendation 6: Monitor the ASTM International process to adopt and test a standard test method for siloxanes.


Recommendation 7: Use the learnings from the siloxane research and the ASTM International process to revisit the siloxane maximum standards once more complete information becomes available.

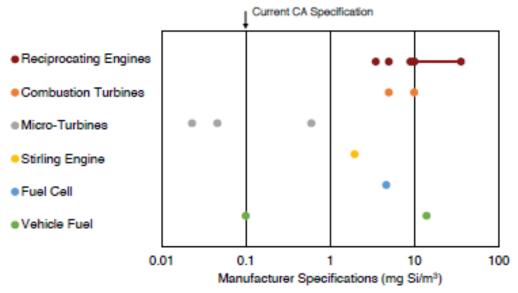
Recommendation 8: State and Federal agencies should examine whether the substantial differences in incentives for various uses of biogas/biomethane are consistent with the State and Federal policy intentions.

Cost Implications of 970 vs. 990 BTU/scf

CCS
CALIFORNIA COUNCIL
SCIENCE & TECHNOLO


- No literature on cost of upgrading to 990 vs 970 BTU/scf
- We performed survey of biomethane upgrading equipment providers
- 28 companies contacted, 7 complete responses
- Constructed cost estimates for template projects

Cost Implications of Siloxane Removal



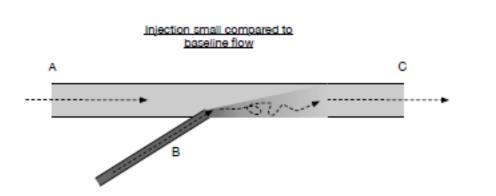
- GTI (2014)
 performed
 survey of
 siloxane
 removal costs
- At Point Loma WWTP scale:
 \$2 per MMBTU

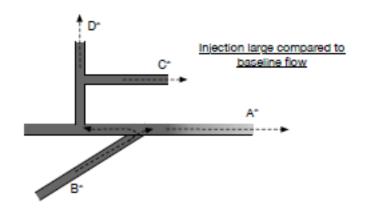
Manufacturer specifications

Key Points:

The CA siloxane specification is more stringent than most manufacturer imposed requirements

Not all equipment has specifications established yet


Alternatives to Pipeline Transportation of Biomethane: Regulatory Incentives



Biogas or Biomethane Use	Regulatory Incentive per MMBTU		
	State LCFS or Cap-and-Trade	Federal RFS	Total
Biogas upgraded to biomethane, transported in pipelines, used for transportation, certified pathway	\$6 - \$48	\$29	\$35 - \$77
Biogas or biomethane used for residential, commercial, industrial or electricity generation	\$1	\$0	\$1
Biomethane used to generate electricity, used for transportation: certified pathway	\$6 - \$48	\$15	\$21 - \$63
Citygate Market Price of Natural Gas: About \$3 per MMBTU			

Options for dilution to meet specifications

- If injection is small compared to flow, dilution will result in gas quality similar to FNG
- If injection is large, displacement of gas over larger region will occur
- In-pipe dilution not a general solution or replacement for injection standards