NOWON

See the future. Change the present.

NOWON BACKGROUND

Founded in 2016

Located in Azusa, CA

US based operation of ECONWARD

US Marketing, Distribution, Manufacturing, and Service Support

Lab operation for **sampling** and **R&D**

DESIGN

Compatible with MRFs and MBT facilities

Scalable and modular system

Residence time: 20 minutes

Footprint: 3,000 ft²

Capacity PER UNIT

- **6.6 ton/h** (52,000 ton/year)
- **330 days/year** 24 h/day

LAB

- Testing facility for various organic waste streams
- Biomass production as resource:
 - Accelerated compost
 - → Fertilizers
 - → Organic soil amendment
 - → Building materials
 - → Biomethanation
 - → Biofuels

BIOMASS RECOVERY

FEEDSTOCK TREATMENT OFFTAKE POST-TREATMENT OUTPUT Anaerobic Food waste digestion **BIOGAS &** Anaerobic Green waste co-digestion Pathogen-free with sludge **ECONWARD BIOMASS ACCELERATED** Composting MRF fines COMPOST SOIL Residuals from **AMENDMENT MBT** plants **BIOFUELS** SOLID/LIQUID **BIOFUELS WTE**

ANAEROBIC DIGESTION

Our technology works as a pretreatment for AD processes, both **digestion** and **codigestion**.

Hydrolyzed material features and benefits for digester feeding:

- Uniform: improves digester operation without additional pretreatments and feedstock dependance.
- Free of Pathogens: helps methanogenic bacteria colonize the material faster.
- Chemically degraded: the most complex molecules break down providing an efficient transformation.

ANAEROBIC DIGESTION

Output benefits:

- Increased Biogas production and yield at the same methane composition rates
- Increased Gas production performance for internal energy consumption
- Combined Heat and Power (CHP)
- Hydraulic Retention Time (HRT) reduction:
 - → Smaller digester designs for improving cost effectiveness
 - → Treatment capacity enhacement for existing digesters
- Continuous digester feeding → easy to integrate

ACCELERATED COMPOST

The thermal hydrolysis process takes the biomass to the end of the Cooling Stage in 20 minutes, leaving the **Maturation Stage only** to achieving a high quality compost.

Composting time as well as atmospheric emissions are reduced.

Compliance as a processor for composting operations and further regulations such as SB 1383.

SOIL AMENDMENT

The technology is capable of transforming any of feedstock to prepare **different mixing "recipes"**:

- → Food waste
- → Green waste
- → Residual materials from MBT plants
- → Manure
- → Other Organic Waste streams

This helps to produce different materials in accordance with the requirements of California Department of Food and Agriculture (CDFA):

- → Bulk soil amendment
- → Packaged soil amendment
- → Commercial/Specialty Fertilizers

BIOFUELS

Pathogen-free and thermally stabilized pellets

→ Easy to handle and store.

Mixing feedstocks from materials that are not subject to being recovered. For example, MRF fines.

Using residual materials in Waste-To-Energy

Various "recipe" designs to meet environmental standards:

- Chlorine
- Ash
- VOCs
- GHG

OVERALL BENEFITS

- Treats the organic fraction of MSW
- Involves a fully-automated plant with low Operational Expenditure (OPEX)
- Helps accelerates composting process reducing time, footprint and GHG emissions
- Increases biogas yield by reducing the AD process time thus ensuring stability and continuity during the procedure
- Offers high treatment capacity, modularity and scalability
 - → 6.6 ton/hour
 - → Surface area of 3,000 ft²

CO2 CARBON FOOTPRINT REDUCTION

Compared to landfilling, we avoid

5,270MtCO₂
eq/year

A single module processes

6.6 ton/h GHG emission avoidance equivalent to

1,850 acres of forest

